IEEE Access (Jan 2023)

Electrical Treeing of SiR and SiR/Fe<sub>3</sub>O<sub>4</sub> Nanocomposites in High Magnetic Field

  • Mingyang Wang,
  • Xuegong Yin,
  • Yuhao Liu,
  • Boxue Du,
  • Congzhao Xue

DOI
https://doi.org/10.1109/access.2023.3280051
Journal volume & issue
Vol. 11
pp. 52614 – 52621

Abstract

Read online

This paper investigates the effects of high magnetic field on electrical treeing of silicone rubber (SiR). Experimental results show that electrical trees are more easily to be initiated and spread further along the direction of electric field under the effects of high magnetic field. When the direction of high magnetic field is perpendicular to that of electric field, magnetic field with higher magnetic flux density also results in larger accumulated damage area. Splitting of energy band structure and changes in polarization characteristics result in a lower interface barrier and more serious partial discharge, thus causing the weakened resistance to electrical treeing in high magnetic field. Based on the insulation degradation mechanism, SiR was modified by adding ferroferric oxide (Fe3O4) nanoparticles to improve its insulation performance in high magnetic field. Moderate addition amount of Fe3O4 nanoparticles is proved to be able to suppress electrical treeing in high magnetic field by forming quantum dots, modifying polarization properties and partial discharge behavior. Excessive addition of Fe3O4 nanoparticles has negative effects on suppressing electrical treeing due to the magnetization of the nanocomposites.

Keywords