Ecotoxicology and Environmental Safety (Jan 2023)

Cadmium tolerance and accumulation from the perspective of metal ion absorption and root exudates in broomcorn millet

  • Jiajia Liu,
  • Dazhong Zhang,
  • Yan Luo,
  • Yuanbo Zhang,
  • Lei Xu,
  • Pengliang Chen,
  • Enguo Wu,
  • Qian Ma,
  • Honglu Wang,
  • Lin Zhao,
  • Baili Feng

Journal volume & issue
Vol. 250
p. 114506

Abstract

Read online

Cadmium (Cd) is a persistent heavy metal that poses environmental and public health concerns. This study aimed to identify the potential biomarkers responsible for Cd tolerance and accumulation by investigating the response of the content of essential metal elements, transporter gene expression, and root exudates to Cd stress in broomcorn millet (Panicum miliaceum). A hydroponics experiment was conducted using two broomcorn millet cultivars with distinct Cd tolerance levels and accumulation phenotypes (Cd-tolerant and Cd-sensitive cultivars). Cd stress inhibited lateral root growth, especially in the Cd-sensitive cultivar. Furthermore, Cd accumulation was significantly greater in the Cd-tolerant cultivar than in the Cd-sensitive cultivar. Cd stress significantly inhibited the absorption of essential metal elements and significantly increased the calcium concentration. Differentially expressed genes involved in metal ion transport were identified via transcriptome analysis. Cd stress altered the composition of root exudates, thus increasing lipid species and decreasing alkaloid, lignan, sugar, and alcohol species. Moreover, Cd stress significantly reduced most alkaloid, organic acid, and phenolic acid exudates in the Cd-tolerant cultivar, while it increased most lipid and phenolic acid exudates in the Cd-sensitive cultivar. Some significantly changed root exudates (ferulic acid, O-coumaric acid, and spermine) are involved in the phenylalanine biosynthesis, and arginine and proline metabolic pathways, thus, may be potential biomarkers of Cd stress response. Overall, metal ion absorption and root exudates are critical for Cd tolerance and accumulation in broomcorn millet. These findings provide valuable insights into improving Cd phytoremediation by applying mineral elements or metabolites.

Keywords