Stresses (Sep 2021)

Abscisic Acid in Coordination with Nitrogen Alleviates Salinity-Inhibited Photosynthetic Potential in Mustard by Improving Proline Accumulation and Antioxidant Activity

  • Arif Majid,
  • Bilal A. Rather,
  • Asim Masood,
  • Zebus Sehar,
  • Naser A. Anjum,
  • Nafees A. Khan

DOI
https://doi.org/10.3390/stresses1030013
Journal volume & issue
Vol. 1, no. 3
pp. 162 – 180

Abstract

Read online

This investigation was done to assess the role of abscisic acid (ABA; 25 µM) and/or nitrogen (N; 10 mM) in the alleviation of salinity (NaCl; 100 mM)-induced reduction in photosynthetic activity and growth, N and sulfur (S) assimilation of mustard (Brassica juncea L.) cv. RH0-749. Salinity treatment caused oxidative stress and significantly elevated the content of both H2O2 and thiobarbituric acid reactive substances (TBARS), and impaired photosynthetic activity and growth, but increased the content of nitrogenous osmolyte proline and the activity of antioxidant enzymes involved in the metabolism of reactive oxygen species. The application of 25 µM ABA under a controlled condition negatively affected photosynthesis and growth. However, ABA, when combined with N, minimized oxidative stress and mitigated the salinity-inhibited effects by increasing the activity of antioxidant enzymes (superoxide dismutase, SOD; glutathione reductase, GR; ascorbate peroxidase, APX) and proline content. Overall, the supplementation of 10 mM N combined with 25 µM ABA provides an important strategy for enhancing the photosynthetic potential of B. juncea under saline conditions.

Keywords