PLoS Computational Biology (Oct 2017)
A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation.
Abstract
Contractions on the descending limb of the total (active + passive) muscle force-length relationship (i. e. when muscle stiffness is negative) are expected to lead to vast half-sarcomere-length inhomogeneities. This is however not observed in experiments-vast half-sarcomere-length inhomogeneities can be absent in myofibrils contracting in this range, and initial inhomogeneities can even decrease. Here we show that the absence of half-sarcomere-length inhomogeneities can be predicted when considering interactions of the semi-active protein titin with the actin filaments. Including a model of actin-titin interactions within a multi-scale continuum-mechanical model, we demonstrate that stability, accurate forces and nearly homogeneous half-sarcomere lengths can be obtained on the descending limb of the static total force-length relation. This could be a key to durable functioning of the muscle because large local stretches, that might harm, for example, the transverse-tubule system, are avoided.