International Journal of Molecular Sciences (Sep 2018)

Divergent Expression Patterns and Function of Two cxcr4 Paralogs in Hermaphroditic Epinephelus coioides

  • Wei-Jia Lu,
  • Li Zhou,
  • Fan-Xiang Gao,
  • Zhi-Hui Sun,
  • Zhi Li,
  • Xiao-Chun Liu,
  • Shui-Sheng Li,
  • Yang Wang,
  • Jian-Fang Gui

DOI
https://doi.org/10.3390/ijms19102943
Journal volume & issue
Vol. 19, no. 10
p. 2943

Abstract

Read online

Chemokine receptor Cxcr4 evolved two paralogs in the teleost lineage. However, cxcr4a and cxcr4b have been characterized only in a few species. In this study, we identified two cxcr4 paralogs from the orange-spotted grouper, Epinephelus coioides. The phylogenetic relationship and gene structure and synteny suggest that the duplicated cxcr4a/b should result from the teleost-specific genome duplication (Ts3R). The teleost cxcr4 gene clusters in two paralogous chromosomes exhibit a complementary gene loss/retention pattern. Ec_cxcr4a and Ec_cxcr4b show differential and biased expression patterns in grouper adult tissue, gonads, and embryos at different stages. During embryogenesis, Ec_cxcr4a/b are abundantly transcribed from the neurula stage and mainly expressed in the neural plate and sensory organs, indicating their roles in neurogenesis. Ec_Cxcr4a and Ec_Cxcr4b possess different chemotactic migratory abilities from the human SDF-1α, Ec_Cxcl12a, and Ec_Cxcl12b. Moreover, we uncovered the N-terminus and TM5 domain as the key elements for specific ligand–receptor recognition of Ec_Cxcr4a-Ec_Cxcl12b and Ec_Cxcr4b-Ec_Cxcl12a. Based on the biased and divergent expression patterns of Eccxcr4a/b, and specific ligand–receptor recognition of Ec_Cxcl12a/b–Ec_Cxcr4b/a, the current study provides a paradigm of sub-functionalization of two teleost paralogs after Ts3R.

Keywords