PLoS ONE (Jan 2017)

Assessing risk of fibrosis progression and liver-related clinical outcomes among patients with both early stage and advanced chronic hepatitis C.

  • Monica A Konerman,
  • Dongxia Lu,
  • Yiwei Zhang,
  • Mary Thomson,
  • Ji Zhu,
  • Aashesh Verma,
  • Boang Liu,
  • Nizar Talaat,
  • Ulysses Balis,
  • Peter D R Higgins,
  • Anna S F Lok,
  • Akbar K Waljee

DOI
https://doi.org/10.1371/journal.pone.0187344
Journal volume & issue
Vol. 12, no. 11
p. e0187344

Abstract

Read online

Assessing risk of adverse outcomes among patients with chronic liver disease has been challenging due to non-linear disease progression. We previously developed accurate prediction models for fibrosis progression and clinical outcomes among patients with advanced chronic hepatitis C (CHC). The primary aim of this study was to validate fibrosis progression and clinical outcomes models among a heterogeneous patient cohort.Adults with CHC with ≥3 years follow-up and without hepatic decompensation, hepatocellular carcinoma (HCC), liver transplant (LT), HBV or HIV co-infection at presentation were analyzed (N = 1007). Outcomes included: 1) fibrosis progression 2) hepatic decompensation 3) HCC and 4) LT-free survival. Predictors included longitudinal clinical and laboratory data. Machine learning methods were used to predict outcomes in 1 and 3 years.The external cohort had a median age of 49.4 years (IQR 44.3-54.3); 61% were male, 80% white, and 79% had genotype 1. At presentation, 73% were treatment naïve and 31% had cirrhosis. Fibrosis progression occurred in 34% over a median of 4.9 years (IQR 3.2-7.6). Clinical outcomes occurred in 22% over a median of 4.4 years (IQR 3.2-7.6). Model performance for fibrosis progression was limited due to small sample size. The area under the receiver operating characteristic curve (AUROC) for 1 and 3-year risk of clinical outcomes was 0.78 (95% CI 0.73-0.83) and 0.76 (95% CI 0.69-0.81).Accurate assessments for risk of clinical outcomes can be obtained using routinely collected data across a heterogeneous cohort of patients with CHC. These methods can be applied to predict risk of progression in other chronic liver diseases.