Frontiers in Immunology (Apr 2022)

Multiple-Allele MHC Class II Epitope Engineering by a Molecular Dynamics-Based Evolution Protocol

  • Rodrigo Ochoa,
  • Victoria Alves Santos Lunardelli,
  • Daniela Santoro Rosa,
  • Daniela Santoro Rosa,
  • Alessandro Laio,
  • Alessandro Laio,
  • Pilar Cossio,
  • Pilar Cossio,
  • Pilar Cossio,
  • Pilar Cossio

DOI
https://doi.org/10.3389/fimmu.2022.862851
Journal volume & issue
Vol. 13

Abstract

Read online

Epitopes that bind simultaneously to all human alleles of Major Histocompatibility Complex class II (MHC II) are considered one of the key factors for the development of improved vaccines and cancer immunotherapies. To engineer MHC II multiple-allele binders, we developed a protocol called PanMHC-PARCE, based on the unsupervised optimization of the epitope sequence by single-point mutations, parallel explicit-solvent molecular dynamics simulations and scoring of the MHC II-epitope complexes. The key idea is accepting mutations that not only improve the affinity but also reduce the affinity gap between the alleles. We applied this methodology to enhance a Plasmodium vivax epitope for multiple-allele binding. In vitro rate-binding assays showed that four engineered peptides were able to bind with improved affinity toward multiple human MHC II alleles. Moreover, we demonstrated that mice immunized with the peptides exhibited interferon-gamma cellular immune response. Overall, the method enables the engineering of peptides with improved binding properties that can be used for the generation of new immunotherapies.

Keywords