E3S Web of Conferences (Jan 2021)

Numerical Simulation of Double Surface Liquid Ejector with Flow Swirl for Centrifugal Pump

  • Lyamasov A. A.,
  • Orahelashvili B. M.,
  • Gribkov A. M.

DOI
https://doi.org/10.1051/e3sconf/202132004003
Journal volume & issue
Vol. 320
p. 04003

Abstract

Read online

Many systems with liquid ejectors and centrifugal pump are known. Often, jet pumps are used to provide a self-priming mode, as well as an acceptable pressure level for cavitation-free operation. The main disadvantage of such systems is the relatively low efficiency associated with the peculiarities of energy transfer in ejector. To increase efficiency double surface jet pump with driving and suction flow swirl (with circumferential component of velocity) is proposed. The active flow swirling is ensured by using of multi-nozzle tangential nozzle inlet and passive flow part by a special blade system. Combination of these factors makes it possible to improve the efficiency of energy conversion process. In comparison with the known design increases pump efficiency by 10 % – 15 %. Flow swirl also permits to reduce horizontal overall size by increasing the diffuser angle and reducing the mixing chamber length. These positive effects can be achieved by using methods and recommendations given in this paper. The paper also includes ANSYS CFX numerical simulation study results of double surface jet pump and analysis of the impact of nozzle position, length of the mixing chamber and other geometry parameters on pump performance. The results allow optimize the constructive solutions.