Sensors (Jul 2020)

Malicious UAV Detection Using Integrated Audio and Visual Features for Public Safety Applications

  • Sonain Jamil,
  • Fawad,
  • MuhibUr Rahman,
  • Amin Ullah,
  • Salman Badnava,
  • Masoud Forsat,
  • Seyed Sajad Mirjavadi

DOI
https://doi.org/10.3390/s20143923
Journal volume & issue
Vol. 20, no. 14
p. 3923

Abstract

Read online

Unmanned aerial vehicles (UAVs) have become popular in surveillance, security, and remote monitoring. However, they also pose serious security threats to public privacy. The timely detection of a malicious drone is currently an open research issue for security provisioning companies. Recently, the problem has been addressed by a plethora of schemes. However, each plan has a limitation, such as extreme weather conditions and huge dataset requirements. In this paper, we propose a novel framework consisting of the hybrid handcrafted and deep feature to detect and localize malicious drones from their sound and image information. The respective datasets include sounds and occluded images of birds, airplanes, and thunderstorms, with variations in resolution and illumination. Various kernels of the support vector machine (SVM) are applied to classify the features. Experimental results validate the improved performance of the proposed scheme compared to other related methods.

Keywords