European Physical Journal C: Particles and Fields (Jan 2023)

Disentangling the sources of ionizing radiation in superconducting qubits

  • L. Cardani,
  • I. Colantoni,
  • A. Cruciani,
  • F. De Dominicis,
  • G. D’Imperio,
  • M. Laubenstein,
  • A. Mariani,
  • L. Pagnanini,
  • S. Pirro,
  • C. Tomei,
  • N. Casali,
  • F. Ferroni,
  • D. Frolov,
  • L. Gironi,
  • A. Grassellino,
  • M. Junker,
  • C. Kopas,
  • E. Lachman,
  • C. R. H. McRae,
  • J. Mutus,
  • M. Nastasi,
  • D. P. Pappas,
  • R. Pilipenko,
  • M. Sisti,
  • V. Pettinacci,
  • A. Romanenko,
  • D. Van Zanten,
  • M. Vignati,
  • J. D. Withrow,
  • N. Z. Zhelev

DOI
https://doi.org/10.1140/epjc/s10052-023-11199-2
Journal volume & issue
Vol. 83, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Radioactivity was recently discovered as a source of decoherence and correlated errors for the real-world implementation of superconducting quantum processors. In this work, we measure levels of radioactivity present in a typical laboratory environment (from muons, neutrons, and $$\gamma $$ γ -rays emitted by naturally occurring radioactive isotopes) and in the most commonly used materials for the assembly and operation of state-of-the-art superconducting qubits. We present a GEANT-4 based simulation to predict the rate of impacts and the amount of energy released in a qubit chip from each of the mentioned sources. We finally propose mitigation strategies for the operation of next-generation qubits in a radio-pure environment.