Open Medicine (Feb 2024)

Metformin plus L-carnitine enhances brown/beige adipose tissue activity via Nrf2/HO-1 signaling to reduce lipid accumulation and inflammation in murine obesity

  • Liang Guojin,
  • Fang Jie,
  • Zhang Pingping,
  • Ding Shuxia,
  • Zhao Yudan,
  • Feng Yueying

DOI
https://doi.org/10.1515/med-2024-0900
Journal volume & issue
Vol. 19, no. 1
pp. 951 – 68

Abstract

Read online

This study investigated how Metformin (Met) combined with L-carnitine (L-car) modulates brown adipose tissue (BAT) to affect obesity. High-fat-induced obese rats received daily oral gavage with Met and/or L-car, followed by serum biochemical analysis, histopathological observation on adipose tissues, and immunochemistry test for the abdominal expression of BAT-specific uncoupling protein 1 (UCP1). Mouse-embryonic-fibroblast cells were induced into adipocytes, during which Met plus L-car was added with/without saturated fatty acid (SFA). The role of nuclear factor erythroid 2-related factor 2 (Nrf2) in adipocyte browning was investigated by gene silencing. Mitochondria biogenesis in adipocytes was inspected by Mitotracker staining. Nrf2/heme oxygenase-1 (HO-1)/BAT-related genes/proinflammatory marker expressions in adipose tissues and/or adipocytes were analyzed by Western blot, qRT-PCR, and/or immunofluorescence test. Met or L-car improved metabolic disorders, reduced adipocyte vacuolization and swelling, upregulated levels of BAT-related genes including UCP1 and downregulated proinflammatory marker expressions, and activated the Nrf2/HO-1 pathway in adipose tissues of obese rats. Met and L-car functioned more strongly than alone. In adipocytes, Met plus L-car upregulated BAT-related gene levels and protected against SFA-caused inflammation promotion and mitochondria degeneration, which yet was attenuated by Nrf2 silencing. Met plus L-car enhances BAT activity and white adipose tissue browning via the Nrf2/HO-1 pathway to reduce lipid accumulation and inflammation in obese rats.

Keywords