Sensors (Jul 2018)

Fast Visual Odometry for a Low-Cost Underwater Embedded Stereo System †

  • Mohamad Motasem Nawaf,
  • Djamal Merad,
  • Jean-Philip Royer,
  • Jean-Marc Boï,
  • Mauro Saccone,
  • Mohamed Ben Ellefi,
  • Pierre Drap

DOI
https://doi.org/10.3390/s18072313
Journal volume & issue
Vol. 18, no. 7
p. 2313

Abstract

Read online

This paper provides details of hardware and software conception and realization of a stereo embedded system for underwater imaging. The system provides several functions that facilitate underwater surveys and run smoothly in real-time. A first post-image acquisition module provides direct visual feedback on the quality of the taken images which helps appropriate actions to be taken regarding movement speed and lighting conditions. Our main contribution is a light visual odometry method adapted to the underwater context. The proposed method uses the captured stereo image stream to provide real-time navigation and a site coverage map which is necessary to conduct a complete underwater survey. The visual odometry uses a stochastic pose representation and semi-global optimization approach to handle large sites and provides long-term autonomy, whereas a novel stereo matching approach adapted to underwater imaging and system attached lighting allows fast processing and suitability to low computational resource systems. The system is tested in a real context and shows its robustness and promising future potential.

Keywords