Journal of High Energy Physics (Jan 2022)

Non-Abelian electric field correlator at NLO for dark matter relic abundance and quarkonium transport

  • Tobias Binder,
  • Kyohei Mukaida,
  • Bruno Scheihing-Hitschfeld,
  • Xiaojun Yao

DOI
https://doi.org/10.1007/JHEP01(2022)137
Journal volume & issue
Vol. 2022, no. 1
pp. 1 – 86

Abstract

Read online

Abstract We perform a complete next-to-leading order calculation of the non-Abelian electric field correlator in a SU(N c ) plasma, which encodes properties of the plasma relevant for heavy particle bound state formation and dissociation, and is different from the correlator for the heavy quark diffusion coefficient. The calculation is carried out in the real-time formalism of thermal field theory and includes both vacuum and finite temperature contributions. By working in the R ξ gauge, we explicitly show the results are gauge independent, infrared and collinear safe. The renormalization group equation of this electric field correlator is determined by that of the strong coupling constant. Our next-to-leading order calculation can be directly applied to any dipole singlet-adjoint transition of heavy particle pairs. For example, it can be used to describe dissociation and (re)generation of heavy quarkonia inside the quark-gluon plasma well below the melting temperature, as well as heavy dark matter pairs (or charged co-annihilating partners) in the early universe.

Keywords