Evaluating the reliability of neurocognitive biomarkers of neurodegenerative diseases across countries: A machine learning approach
M. Belen Bachli,
Lucas Sedeño,
Jeremi K. Ochab,
Olivier Piguet,
Fiona Kumfor,
Pablo Reyes,
Teresa Torralva,
María Roca,
Juan Felipe Cardona,
Cecilia Gonzalez Campo,
Eduar Herrera,
Andrea Slachevsky,
Diana Matallana,
Facundo Manes,
Adolfo M. García,
Agustín Ibáñez,
Dante R. Chialvo
Affiliations
M. Belen Bachli
Center for Complex Systems & Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnologia (ECyT), Universidad Nacional de San Martín, 25 de Mayo 1169, San Martín, (1650), Buenos Aires, Argentina
Lucas Sedeño
Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; Corresponding author. Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina.
Jeremi K. Ochab
Marian Smoluchowski Institute of Physics, Mark Kac Complex Systems Research Center Jagiellonian University, Ul. Łojasiewicza 11, PL30-348, Kraków, Poland
Olivier Piguet
ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
Fiona Kumfor
ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; The University of Sydney, Brain and Mind Centre and School of Psychology, Sydney, Australia
Pablo Reyes
Radiology, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia; Medical School, Physiology Sciences, Psychiatry and Mental Health Pontificia Universidad Javeriana (PUJ) – Centro de Memoria y Cognición Intellectus, Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia
Teresa Torralva
Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
María Roca
Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
Juan Felipe Cardona
Instituto de Psicología, Universidad del Valle, Cali, Colombia
Cecilia Gonzalez Campo
Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina
Eduar Herrera
Departamento de Estudios Psicológicos, Universidad Icesi, Cali, Colombia
Andrea Slachevsky
Gerosciences Center for Brain Health and Metabolism, Santiago, Chile; Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, ICBM, Neurosciences Department, East Neuroscience Department, Faculty of Medicine, University of Chile, Avenida Salvador 486, Providencia, Santiago, Chile; Memory and Neuropsychiatric Clinic (CMYN) Neurology Department- Hospital del Salvador & University of Chile, Av. Salvador 364, Providencia, Santiago, Chile; Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Chile
Diana Matallana
Medical School, Aging Institute, Psychiatry and Mental Health, Pontificia Universidad Javeriana (PUJ) – Centro de Memoria y Cognición Intellectus. Hospital Universitario San Ignacio (HUSI), Bogotá, Colombia
Facundo Manes
Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia
Adolfo M. García
Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; Faculty of Education, National University of Cuyo (UNCuyo), Sobremonte 74, C5500, Mendoza, Argentina
Agustín Ibáñez
Institute of Cognitive and Translational Neuroscience (INCYyT), INECO Foundation, Favaloro University, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina; ARC Centre of Excellence in Cognition and Its Disorders, Sydney, Australia; Universidad Autónoma del Caribe, Calle 90, No 46-112, C2754, Barranquilla, Colombia; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Diagonal Las Torres, 2640, Santiago, Chile
Dante R. Chialvo
Center for Complex Systems & Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnologia (ECyT), Universidad Nacional de San Martín, 25 de Mayo 1169, San Martín, (1650), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Godoy Cruz 2290, Buenos Aires, Argentina
Accurate early diagnosis of neurodegenerative diseases represents a growing challenge for current clinical practice. Promisingly, current tools can be complemented by computational decision-support methods to objectively analyze multidimensional measures and increase diagnostic confidence. Yet, widespread application of these tools cannot be recommended unless they are proven to perform consistently and reproducibly across samples from different countries. We implemented machine-learning algorithms to evaluate the prediction power of neurocognitive biomarkers (behavioral and imaging measures) for classifying two neurodegenerative conditions –Alzheimer Disease (AD) and behavioral variant frontotemporal dementia (bvFTD)– across three different countries (>200 participants). We use machine-learning tools integrating multimodal measures such as cognitive scores (executive functions and cognitive screening) and brain atrophy volume (voxel based morphometry from fronto-temporo-insular regions in bvFTD, and temporo-parietal regions in AD) to identify the most relevant features in predicting the incidence of the diseases. In the Country-1 cohort, predictions of AD and bvFTD became maximally improved upon inclusion of cognitive screenings outcomes combined with atrophy levels. Multimodal training data from this cohort allowed predicting both AD and bvFTD in the other two novel datasets from other countries with high accuracy (>90%), demonstrating the robustness of the approach as well as the differential specificity and reliability of behavioral and neural markers for each condition. In sum, this is the first study, across centers and countries, to validate the predictive power of cognitive signatures combined with atrophy levels for contrastive neurodegenerative conditions, validating a benchmark for future assessments of reliability and reproducibility.