Energies (Mar 2025)
Multi-Objective Optimization of Blockage Design Parameters Affecting the Performance of PEMFC by OEM-AHP-EWM Analysis
Abstract
Adding blockages to the gas flow channels in the bipolar plates has a significant effect on the performance of the proton exchange membrane fuel cell (PEMFC). The design parameters of the gas flow channels with blockages mainly include the blockage shape (S), blockage number (N), blockage height (H), and channel–rib width ratio (CRWR) value. This paper systematically examines the combined effects of S, N, H, and CRWR value on current density (I), pressure drop (ΔP), net output power (Wnet), and non-uniformity of oxygen distribution (NU) of PEMFC through the application of the orthogonal experimental method (OEM). To provide a comprehensive optimization strategy, a novel multi-criteria decision framework is introduced, which integrates the analytic hierarchy process (AHP) and entropy weight method (EWM) to balance different evaluation objectives. Results from the AHP-EWM analysis reveal that the weight values of I, ΔP, Wnet, and NU are 0.415, 0.08, 0.325, and 0.18, respectively. The CRWR value exhibits the greatest effect on the comprehensive performance of PEMFC, followed by H, N, and S. The optimal design parameter combination identified in this paper is a triangular blockage with nine blockages, a height of 0.8 mm, and a CRWR value of 0.25, corresponding to the highest comprehensive score of 31.8306 among the 25 groups of orthogonal experiments. This paper provides a new optimization perspective and certain guidance for the performance optimization direction of PEMFC.
Keywords