Parasites & Vectors (Sep 2021)
Use of transcriptional age grading technique to determine the chronological age of Sri Lankan Aedes aegypti and Aedes albopictus females
Abstract
Abstract Background Aedes aegypti and Ae. albopictus are important vectors of human diseases such as dengue, chikungunya, and zika. In Sri Lanka, they have been responsible for transmitting dengue virus. One of the most important parameters influencing the likelihood of arbovirus transmission is the age structure of the mosquito population. However, mosquito age is difficult to measure with accuracy. This study aims to construct multivariate calibration models using the transcriptional abundance of three age-responsive genes: Ae15848 (calcium-binding protein), Ae8505 (structural component of cuticle), and Ae4274 (fizzy cell cycle/cell division cycle 20). Methods The transcriptional age-grading technique was applied to determine the chronological age of Ae. aegypti and Ae. albopictus female mosquito populations from Sri Lanka using the age-responsive genes Ae15848, Ae8505, and Ae4274. Furthermore, Ae. aegypti samples obtained from colonies reared at two temperatures (23 and 27 °C) were used to investigate the influence of temperature on this age-grading technique. Expression levels of these three genes were quantified using reverse transcription qualitative PCR (qRT-PCR), and results were normalized against the housekeeping gene ribosomal gene S17 (RpS17). Results The expression of Ae15848 and Ae8505 decreased with the age of mosquitoes and showed the most significant and consistent change while expression of Ae4274 increased with age. The multivariate calibration models showed > 80% correlation between expression of these age-responsive genes and the age of female mosquitoes at both temperatures. At 27 °C the accuracy of age predictions using the models was 2.19 (± 1.66) days and 2.58 (± 2.06) days for Ae. aegypti and Ae. albopictus females, respectively. The accuracy of the model for Ae. aegypti at 23 °C was 3.42 (± 2.74) days. Conclusions An adult rearing temperature difference of 4 °C (23–27 °C) did not significantly affect the age predictions. The calibration models created during this study could be successfully used to estimate the age of wild Ae. aegypti and Ae. albopictus mosquitoes from Sri Lanka. Graphical Abstract
Keywords