Тонкие химические технологии (Jan 2021)
Structure–property models of organic compounds based on molecular graphs with elements of the spatial structures of the molecules
Abstract
Objectives. This article aims to describe, elaborate, and test a general algorithmic method for constructing the structure–property models for organic compounds.Results. The construction of the models is based on the statistical analysis of some sets of chemical structures of definite classes with known property values. These models have some forms of correlation equations. For the representation of chemical structures in this method, the special weighted molecular graphs (MGs) that reflect some peculiarities of the spatial structures of the corresponding molecules are used. The proposed method is realized in two steps. First, it is assumed that the required structure–property equation has a definite form and depends on several adjusted numerical parameters and two changeable functions of one variable. In this step, from some set of functions, the pair of functions that provide the best model is selected. In the second step, the best model (from the previous step) is modified. For this purpose, the classification of the vertices of MG by the chemical symbols of the corresponding atoms and their first-order environments is fulfilled. Further, the graph edges are classified according to the classes of the vertices which they connect. Furthermore, the numerical correction terms for the initial weights of the vertices and edges are introduced, and they improve the obtained model. The final result of the model-construction process is the equation of the definite form containing concrete numerical values of its parameters. Some examples of the application of the elaborated method for constructing the structure–property models for the concrete properties and classes of compounds are presented. The following classes of organic compounds and their physicochemical properties are considered: 1) the boiling point of alcohols, 2) the water solubility of alcohols, 3) the boiling point of sulfides, and 4) the retention indices of alkylphenols. The obtained results indicate the efficiency of the proposed approach and the significance of introducing the second step to the method.Conclusions. In this work, a general algorithmic and computerized method for constructing the structure–property models of organic compounds is suggested. Examples of the application of this method demonstrated its high efficiency. The method is suitable for any class of organic compounds and properties, which are quantitatively measured. Owing to its high efficiency, the structure–property models obtained by this approach can be employed to calculate the properties of chemical compounds for which experimental data are unavailable.
Keywords