PLoS ONE (Jan 2014)
Hydrophilization of poly(caprolactone) copolymers through introduction of oligo(ethylene glycol) moieties.
Abstract
In this study, a new family of poly(ε-caprolactone) (PCL) copolymers that bear oligo(ethylene glycol) (OEG) moieties is described. The synthesis of three different oligo(ethylene glycol) functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL) to poly(CL-co-OEG-MPO) copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ) were observed. While unmodified PCL promoted elongated (anisotropic) morphologies (Φ = 0.094), PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184) similar to those observed on glass controls (Φ = 0.151).