INCAS Bulletin (Mar 2024)
Magnetic Shielding Implementation in the Small Satellite Reaction Wheel
Abstract
Low Earth orbit satellites face challenges from Earth's magnetic field, causing attitude disturbances. Attaining a magnetic-dipole-free satellite is crucial. Layout optimization and in-orbit dipole compensation are common methods, but layout optimization can be impractical. In contrast, in-orbit dipole compensation struggles with rapidly changing magnetic dipoles like those from reaction wheel motors. This research proposes an alternative solution using Mu-metal, known for shielding against magnetic exposure. This shield can be applied to trap the magnetic field generated by the motors. Ground tests evaluated this approach. First, it determined the minimum distance between the magnetometer and the shield for accurate measurements with minimal interference, with the result of 10 cm as the least affected distance, particularly important for small satellite layout design. Second, it assessed the shield's effectiveness in trapping the motor-generated magnetic field. Tests showed a significant reduction in magnetic field magnitude and up to a 95% reduction in field fluctuations when the motor is activated. This research offers a practical solution for small satellite layout design, addressing the challenges posed by their compact dimensions. Mu-metal shielding proves effective for mitigating rapidly changing magnetic dipoles and enhancing magnetic cleanliness in low Earth orbit.
Keywords