Journal for ImmunoTherapy of Cancer (Mar 2022)
Sensitizing immune unresponsive colorectal cancers to immune checkpoint inhibitors through MAVS overexpression
Abstract
Background The majority of colorectal carcinomas (CRCs) are insensitive to programmed death protein-1/programmed death-ligand 1 (anti-PD-1/PD-L1) immune checkpoint inhibitor (ICI) antibodies. While there are many causes for ICI insensitivity, recent studies suggest that suppression of innate immune gene expression in tumor cells could be a root cause of this insensitivity and an important factor in the evolution of tumor immunosuppression.Methods We first assessed the reduction of mitochondrial antiviral signaling gene (MAVS) and related RIG-I pathway gene expression in several patient RNA expression datasets. We then engineered MAVS expressing tumor cells and tested their ability to elicit innate and adaptive anti-tumor immunity using both in vitro and in vivo approaches, which we then confirmed using MAVS expressing viral vectors. Finally, we observed that MAVS stimulated PD-L1 expression in multiple cell types and then assessed the combination of PD-L1 ICI antibodies with MAVS tumor expression in vivo.Results MAVS was significantly downregulated in CRCs, but its re-expression could stimulate broad cellular interferon-related responses, in both murine and patient-derived CRCs. In vivo, local MAVS expression elicited significant anti-tumor responses in both immune-sensitive and insensitive CRC models, through the stimulation of an interferon responsive axis that provoked tumor antigen-specific adaptive immunity. Critically, we found that tumor-intrinsic MAVS expression triggered systemic adaptive immune responses that enabled abscopal CD8 +T cell cytotoxicity against distant CRCs. As MAVS also induced PD-L1 expression, we further found synergistic anti-tumor responses in combination with anti-PD-L1 ICIs.Conclusion These data demonstrate that intratumoral MAVS expression results in local and systemic tumor antigen-specific T cell responses, which could be combined with PD-L1 ICI to permit effective anti-tumor immunotherapy in ICI resistant cancers.