Soil Systems (Jul 2019)

Modeling Runoff-Formation and Soil Erosion after Pumice Excavation at Forested Andosol-Sites in SW-Germany Using WEPP

  • Julian J. Zemke,
  • Joshua Pöhler,
  • Stephan Stegmann

DOI
https://doi.org/10.3390/soilsystems3030048
Journal volume & issue
Vol. 3, no. 3
p. 48

Abstract

Read online

This study investigates the effects of pumice excavation on runoff formation and soil erosion processes in a forested catchment in SW-Germany. The underlying questions are, if (a) backfilled soils have different properties concerning runoff generation and erodibility and if (b) clear-cutting prior to excavation triggers runoff and erosion. Four adjacent sub-areas were observed, which represented different pre- and post-excavation-stages. The basis of the investigation was a comprehensive field sampling that delivered the data for physical erosion modeling using the Water Erosion Prediction Project (WEPP). Modeling took place for standardized conditions (uniform slope geometry and/or uniform land management) and for actual slope geometry and land management. The results show that backfilled soils exhibited 53% increase of annual runoff and 70% increase of annual soil loss under standardized conditions. Storm runoff was increased by 6%, while storm soil loss was reduced by 9%. Land management changes also triggered shifts in annual runoff and soil erosion: Clear-cut (+1.796% runoff, +4.205% soil loss) and bare (+5.958% runoff, +21.055% soil loss) surfaces showed the most distinct changes when compared to undisturbed forest. While reforestation largely diminished post-excavation runoff and soil erosion, the standardized results statistically prove that soil erodibility and runoff generation remain increased after backfilling.

Keywords