Porcine Health Management (Apr 2023)
Differential impact of yeast cell wall products in recovery of porcine intestinal epithelial cell barrier function following Lipopolysaccharide challenge
Abstract
Abstract Background In swine intestinal barrier deterioration can be caused by exposure to harmful bacteria, toxins or contaminants that can lead to a leaky gut and post weaning diarrhoea. A leaky gut leads to increased infection, inflammation and poor nutrient absorption that can impair piglet growth and ultimately survival. Application of yeast cell wall (YCW) products may offer an opportunity to reduce the intestinal barrier damage caused by microbial challenge. A Mannan rich fraction (MRF) and three YCW products were compared by examining their impact on intestinal barrier function using a Jejunal model of intestine in response to a bacterial challenge using Salmonella LPS. Results Trans epithelial electrical resistance (TEER) readings showed MRF had a significantly higher barrier function (P ≤ 0.05) over the positive control while YCW products A, B and C demonstrated no significant improvement to the positive control. Transcriptome analysis of the IPEC-J2 cells showed that differentially expressed genes associated with the gene ontology (GO) term for Structural molecule activity was significantly upregulated in the MRF treated cells over the positive control cells with 56 genes upregulated compared to product B (50 genes), Product C, (25 genes) and the negative control’s 60 genes. Product A had no functional grouping under the structural molecule activity term. Both qPCR and western blotting analysis of tight junction associated genes showed that MRF treated cells demonstrated significantly higher Claudin 3 junctional gene expression (P ≤ 0.05) over the positive control and treatments A, B and C. Occludin expression was significantly higher in MRF treated cells (P ≤ 0.05) over the positive control and product B. A nonsignificant rise in TJP-1 gene expression was observed in the MRF treated cells when compared to the positive control. Protein abundances of Claudin 3, Occludin and TJP-1 were significantly (P ≤ 0.05) higher following MRF application to LPS challenged IPEC-J2 cells over the positive control. Conclusions The difference in each YCW products production and composition appeared to influence intestinal barrier integrity. The action of MRF demonstrates its potential ability to raise intestinal barrier integrity of IPEC-J2 intestinal cells on an in vitro level through significantly elevated intracellular connections.
Keywords