JDS Communications (May 2022)

Effects of feeding Saccharomyces cerevisiae fermentation products on the health and growth performance of Holstein dairy calves

  • R.N. Klopp,
  • R.E. Centeno-Martinez,
  • I. Yoon,
  • T.A. Johnson,
  • J.P. Boerman

Journal volume & issue
Vol. 3, no. 3
pp. 174 – 179

Abstract

Read online

It is essential to reduce antibiotic use in the livestock industry, which leads to a need for alternatives to antibiotics that reduce illness and promote growth in dairy calves. The objective of this study was to evaluate the effect of feeding dairy calves Saccharomyces cerevisiae fermentation products (SCFP) on average daily gain (ADG) and antibiotic use in dairy calves through 4 mo of age. Holstein bull calves (n = 60; 5 ± 3 d old) were blocked by body weight (BW) and serum total protein (STP) and assigned to 1 of 2 treatments. The control treatment (CON) fed a 24% crude protein (CP):17% fat milk replacer (MR), calf starter, grower #1, and grower #2 with no SCFP added. The SCFP treatment fed the same MR with 1 g/d of SCFP, calf starter with 0.8% (dry matter; DM) SCFP, grower #1 with 0.44% (DM) SCFP, and grower #2 with 0.275% (DM) SCFP. Calves were offered 2.84 L (12.5% solids) of MR twice daily (0630 and 1630 h) through d 51 and MR once daily (0630 h) from d 52 to 56, and were weaned on d 57. From d 1 to 56, calves also received ad libitum access to calf starter and water. On d 57, calves were switched to grower #1 and on d 84, calves were switched to grower #2, which contained a lower level of CP and a higher level of neutral detergent fiber (NDF). Individual calf BW, body condition score (BCS), hip height (HH), and hip width (HW) were measured biweekly from d 0 to 112. Feed intake was recorded daily, and feed efficiency (gain:feed) and ADG were calculated. Daily fecal and respiratory scores were recorded for each calf through d 56, and all medical interventions were recorded for the duration of the study and grouped based on illness. We found no effect of treatment on STP, BW, BCS, HH, or HW at d 0 or 56, nor effects on preweaning ADG and feed efficiency. No treatment effect was observed for BCS or HH at d 112; however, BW and HW were increased in SCFP calves at d 112. A treatment tendency was observed for postweaning ADG, with SCFP calves being larger than CON calves and SCFP calves having improved feed efficiency compared with CON calves after weaning. A treatment effect was observed for respiratory treatments postweaning, with SCFP calves being treated less frequently than CON calves. Our results suggest that feeding SCFP to calves improves postweaning growth and feed efficiency, and reduces postweaning respiratory disease interventions.