Геохімія техногенезу (Feb 2020)
NOVEL COMPOSITE ADSORBENT BASED ON ION EXCHANGE RESIN WITH FERROCYANIDE PHASE FOR SELECTIVE REMOVAL OF CESIUM RADIONUCLIDES
Abstract
The development of sorption technologies for the removal, separation, and concentration of radionuclides is an actual problem. In this respect the development of modern fabrication approaches of efficient adsorbents become especially relevant nowadays. Composite adsor-bents with a sorption-active inorganic phase are of particular interest for selective removal of radionuclides. Ion exchange resins are a promising solid support matrix for fabrication of composite adsorbents by formation of inorganic nanoparticles on the surface/inside poly-mer granules by one stage experiment in situ. This article presents the experimental results on the fabrication of novel composite adsorbent based on macroporous polystyrene resin with sulfonic acid groups by in situ formation of potassium-nickel ferrocyanide phase and its ap-plication for selective removal of cesium ions from the model solutions with high concentrations of competitive sodium ions. The obtained results of X–ray diffraction and scanning electron-microscopy studies confirm the formation of a ferrocyanide phase on the surface of pol-ymer granules in the form of dense uniform layer of nanoscaled aggregates of potassium-copper ferrocyanide. Sorption experiments showed that composite polymer granules with the ferrocyanide phase are characterized by high selectivity to cesium ions in the presence of a significant excess of competitive sodium ions. The performed studies allow concluding that the synthesized composite adsorbent based on macroporous polymer granules with the ferrocyanide phase is of interest for practical use in sorption purification of natural waters and technological solutions from cesium radionuclides.
Keywords