Life (Feb 2023)

Interplay Impact of Exogenous Application of Abscisic Acid (ABA) and Brassinosteroids (BRs) in Rice Growth, Physiology, and Resistance under Sodium Chloride Stress

  • Sajid Hussain,
  • Satyabrata Nanda,
  • Muhammad Ashraf,
  • Ali Raza Siddiqui,
  • Sajid Masood,
  • Maqsood Ahmed Khaskheli,
  • Muhammad Suleman,
  • Lianfeng Zhu,
  • Chunquan Zhu,
  • Xiaochuang Cao,
  • Yali Kong,
  • Qianyu Jin,
  • Junhua Zhang

DOI
https://doi.org/10.3390/life13020498
Journal volume & issue
Vol. 13, no. 2
p. 498

Abstract

Read online

The hormonal imbalances, including abscisic acid (ABA) and brassinosteroid (BR) levels, caused by salinity constitute a key factor in hindering spikelet development in rice and in reducing rice yield. However, the effects of ABA and BRs on spikelet development in plants subjected to salinity stress have been explored to only a limited extent. In this research, the effect of ABA and BRs on rice growth characteristics and the development of spikelets under different salinity levels were investigated. The rice seedlings were subjected to three different salt stress levels: 0.0875 dS m−1 (Control, CK), low salt stress (1.878 dS m−1, LS), and heavy salt stress (4.09 dS m−1, HS). Additionally, independent (ABA or BR) and combined (ABA+BR) exogenous treatments of ABA (at 0 and 25 μM concentration) and BR (at 0 and 5 μM concentration) onto the rice seedlings were performed. The results showed that the exogenous application of ABA, BRs, and ABA+BRs triggered changes in physiological and agronomic characteristics, including photosynthesis rate (Pn), SPAD value, pollen viability, 1000-grain weight (g), and rice grain yield per plant. In addition, spikelet sterility under different salt stress levels (CK, LS, and HS) was decreased significantly through the use of both the single phytohormone and the cocktail, as compared to the controls. The outcome of this study reveals new insights about rice spikelet development in plants subjected to salt stress and the effects on this of ABA and BR. Additionally, it provides information on the use of plant hormones to improve rice yield under salt stress and on the enhancement of effective utilization of salt-affected soils.

Keywords