Journal of Infection and Public Health (Jul 2024)

Formulation of next-generation polyvalent vaccine candidates against three important poxviruses by targeting DNA-dependent RNA polymerase using an integrated immunoinformatics and molecular modeling approach

  • Anuj Kumar,
  • Mansi Dutt,
  • Budheswar Dehury,
  • Gustavo Sganzerla Martinez,
  • Krishna Pal Singh,
  • David J. Kelvin

Journal volume & issue
Vol. 17, no. 7
p. 102470

Abstract

Read online

Background: Poxviruses comprise a group of large double-stranded DNA viruses and are known to cause diseases in humans, livestock animals, and other animal species. The Mpox virus (MPXV; formerly Monkeypox), variola virus (VARV), and volepox virus (VPXV) are among the prevalent poxviruses of the Orthopoxviridae genera. The ongoing Mpox infectious disease pandemic caused by the Mpox virus has had a major impact on public health across the globe. To date, only limited repurposed antivirals and vaccines are available for the effective treatment of Mpox and other poxviruses that cause contagious diseases. Methods: The present study was conducted with the primary goal of formulating multi-epitope vaccines against three evolutionary closed poxviruses i.e., MPXV, VARV, and VPXV using an integrated immunoinformatics and molecular modeling approach. DNA-dependent RNA polymerase (DdRp), a potential vaccine target of poxviruses, has been used to determine immunodominant B and T-cell epitopes followed by interactions analysis with Toll-like receptor 2 at the atomic level. Results: Three multi-epitope vaccine constructs, namely DdRp_MPXV (V1), DdRp_VARV (V2), and DdRp_VPXV (V3) were designed. These vaccine constructs were found to be antigenic, non-allergenic, non-toxic, and soluble with desired physicochemical properties. Protein-protein docking and interaction profiling analysis depicts a strong binding pattern between the targeted immune receptor TLR2 and the structural models of the designed vaccine constructs, and manifested a number of biochemical bonds (hydrogen bonds, salt bridges, and non-bonded contacts). State-of-the-art all-atoms molecular dynamics simulations revealed highly stable interactions of vaccine constructs with TLR2 at the atomic level throughout the simulations on 300 nanoseconds. Additionally, the outcome of the immune simulation analysis suggested that designed vaccines have the potential to induce protective immunity against targeted poxviruses. Conclusions: Taken together, formulated next-generation polyvalent vaccines were found to have good efficacy against closely related poxviruses (MPXV, VARV, and VPXV) as demonstrated by our extensive immunoinformatics and molecular modeling evaluations; however, further experimental investigations are still needed.

Keywords