Neural Regeneration Research (Jan 2015)
Neuroprotective effects of SMADs in a rat model of cerebral ischemia/reperfusion
- Fang-fang Liu,
- Chao-ying Liu,
- Xiao-ping Li,
- Sheng-zhe Zheng,
- Qing-quan Li,
- Qun Liu,
- Lei Song
Affiliations
- Fang-fang Liu
- Chao-ying Liu
- Xiao-ping Li
- Sheng-zhe Zheng
- Qing-quan Li
- Qun Liu
- Lei Song
- DOI
- https://doi.org/10.4103/1673-5374.153693
- Journal volume & issue
-
Vol. 10,
no. 3
pp. 438 – 444
Abstract
Previous studies have shown that up-regulation of transforming growth factor β1 results in neuroprotective effects. However, the role of the transforming growth factor β1 downstream molecule, SMAD2/3, following ischemia/reperfusion remains unclear. Here, we investigated the neuroprotective effects of SMAD2/3 by analyzing the relationships between SMAD2/3 expression and cell apoptosis and inflammation in the brain of a rat model of cerebral ischemia/reperfusion. Levels of SMAD2/3 mRNA were up-regulated in the ischemic penumbra 6 hours after cerebral ischemia/reperfusion, reached a peak after 72 hours and were then decreased at 7 days. Phosphorylated SMAD2/3 protein levels at the aforementioned time points were consistent with the mRNA levels. Over-expression of SMAD3 in the brains of the ischemia/reperfusion model rats via delivery of an adeno-associated virus containing the SMAD3 gene could reduce tumor necrosis factor-α and interleukin-1β mRNA levels, down-regulate expression of the pro-apoptotic gene, capase-3, and up-regulate expression of the anti-apoptotic protein, Bcl-2. The SMAD3 protein level was negatively correlated with cell apoptosis. These findings indicate that SMAD3 exhibits neuroprotective effects on the brain after ischemia/reperfusion through anti-inflammatory and anti-apoptotic pathways.
Keywords
- tamoxifen
- Src kinase
- PP2
- trauma
- regeneration
- neuroprotection
- auranofin
- dextromethorphan
- rosiglitazone
- Alzheimer′s disease
- neuroinflammation
- neurodegeneration
- microglia
- astrocytes
- nerve regeneration
- spinal cord
- electroacupuncture therapy
- neural stem cells
- notch signaling pathway
- astrocytes
- inflammation
- survival curve
- proliferation
- differentiation
- real-time quantitative PCR
- western blot assay
- neural regeneration
- nerve regeneration
- superparamagnetic iron oxide
- magnetic guidance
- bone marrow mesenchymal stem cells
- spinal cord injury
- cell transplantation
- magnetic resonance image
- lumbar puncture
- neural regeneration
- nerve regeneration
- spinal cord injury
- spinal cord transection
- average combined score
- magnetic resonance imaging
- diffusion tensor imaging
- fractional anisotropy
- apparent diffusion coefficient
- fiber tractography
- neural regeneration
- nerve regeneration
- peripheral nerve injury
- sciatic nerve
- hypothermia
- blood-nerve barrier
- Evans blue tracer
- neural degeneration
- nerve regeneration
- polyethyleneimine-polyethylene glycol
- spiral ganglion cells
- X-linked inhibitor of apoptosis protein
- gene therapy
- nanocarrier
- cisplatin
- neural regeneration
- ototoxicity
- cochlea
- nerve regeneration
- ocular hypertension
- JNK3
- retinal ganglion cell
- glaucoma
- laser photocoagulation
- intraocular pressure
- neural regeneration
- nerve regeneration
- brain injury
- neuroprotection
- inflammation
- apoptosis
- cerebral ischemia
- SMAD3
- transforming growth factor β1
- NSFC grant
- neural regeneration