Atmospheric Chemistry and Physics (Jul 2023)

Volatility of aerosol particles from NO<sub>3</sub> oxidation of various biogenic organic precursors

  • E. L. Graham,
  • C. Wu,
  • C. Wu,
  • D. M. Bell,
  • A. Bertrand,
  • S. L. Haslett,
  • U. Baltensperger,
  • I. El Haddad,
  • R. Krejci,
  • I. Riipinen,
  • C. Mohr,
  • C. Mohr

DOI
https://doi.org/10.5194/acp-23-7347-2023
Journal volume & issue
Vol. 23
pp. 7347 – 7362

Abstract

Read online

Secondary organic aerosol (SOA) is formed through the oxidation of volatile organic compounds (VOCs), which can be of both natural and anthropogenic origin. While the hydroxyl radical (OH) and ozone (O3) are the main atmospheric oxidants during the day, the nitrate radical (NO3) becomes more important during the nighttime. Yet, atmospheric nitrate chemistry has received less attention compared to OH and O3. The Nitrate Aerosol and Volatility Experiment (NArVE) aimed to study the NO3-induced SOA formation and evolution from three biogenic VOCs (BVOCs), namely isoprene, α-pinene, and β-caryophyllene. The volatility of aerosol particles was studied using isothermal evaporation chambers, temperature-dependent evaporation in a volatility tandem differential mobility analyzer (VTDMA), and thermal desorption in a filter inlet for gases and aerosols coupled to a chemical ionization mass spectrometer (FIGAERO-CIMS). Data from these three setups present a cohesive picture of the volatility of the SOA formed in the dark from the three biogenic precursors. Under our experimental conditions, the SOA formed from NO3 + α-pinene was generally more volatile than SOA from α-pinene ozonolysis, while the NO3 oxidation of isoprene produced similar although slightly less volatile SOA than α-pinene under our experimental conditions. β-Caryophyllene reactions with NO3 resulted in the least volatile species. Four different parameterizations for estimating the saturation vapor pressure of the oxidation products were tested for reproducing the observed evaporation in a kinetic modeling framework. Our results show that the SOA from nitrate oxidation of α-pinene or isoprene is dominated by low-volatility organic compounds (LVOCs) and semi-volatile organic compounds (SVOCs), while the corresponding SOA from β-caryophyllene consists primarily of extremely low-volatility organic compounds (ELVOCs) and LVOCs. The parameterizations yielded variable results in terms of reproducing the observed evaporation, and generally the comparisons pointed to a need for re-evaluating the treatment of the nitrate group in such parameterizations. Strategies for improving the predictive power of the volatility parameterizations, particularly in relation to the contribution from the nitrate group, are discussed.