Machines (Aug 2022)

Adaptive Band Extraction Based on Low Rank Approximated Nonnegative Tucker Decomposition for Anti-Friction Bearing Faults Diagnosis Using Measured Vibration Data

  • Haobin Wen,
  • Long Zhang,
  • Jyoti K. Sinha

DOI
https://doi.org/10.3390/machines10080694
Journal volume & issue
Vol. 10, no. 8
p. 694

Abstract

Read online

Condition monitoring and fault diagnosis are topics of growing interest for improving the reliability of modern industrial systems. As critical structural components, anti-friction bearings often operate under harsh conditions and are contributing factors of system failures. Efforts have been cast on bearing diagnostics under the sensor fusion and machine learning framework, whilst challenges remain open on the identification of incipient faults. In this paper, exploiting multi-way representations and decompositions of measured vibration data, a novel band separation method based on the factorization of spectrogram tensors using the low rank approximated nonnegative Tucker decomposition (LRANTD) is proposed and applied to identify detailed fault signatures from the spectral, temporal, and spatial dimensions, flexible for extracting multi-sensor features and multi-dimensional correlations. With the proposed method, informative frequency bands of the latent vibrational components can be automatically extracted, in accordance with the inherent temporal patterns that can be conveniently fed for spectral analysis and fault discrimination. Furthermore, an improved cross-spectrum can be calculated from multi-channel vibrations via LRANTD with enhanced fault features. Based on the real-world vibration data of the accelerated bearing life tests, detailed experimental studies and thorough comparisons to the conventional benchmarks have verified the effectiveness of the reported diagnostic methodology. The proposed method significantly improves the presence of the bearing frequency peaks distinctly over the background noises in the spectrum and hence improves the bearing defect detection process.

Keywords