PLoS ONE (Jan 2016)

L-Tryptophan Production in Escherichia coli Improved by Weakening the Pta-AckA Pathway.

  • Lina Liu,
  • Xuguo Duan,
  • Jing Wu

DOI
https://doi.org/10.1371/journal.pone.0158200
Journal volume & issue
Vol. 11, no. 6
p. e0158200

Abstract

Read online

Acetate accumulation during the fermentation process of Escherichia coli FB-04, an L-tryptophan production strain, is detrimental to L-tryptophan production. In an initial attempt to reduce acetate formation, the phosphate acetyltransferase gene (pta) from E. coli FB-04 was deleted, forming strain FB-04(Δpta). Unfortunately, FB-04(Δpta) exhibited a growth defect. Therefore, pta was replaced with a pta variant (pta1) from E. coli CCTCC M 2016009, forming strain FB-04(pta1). Pta1 exhibits lower catalytic capacity and substrate affinity than Pta because of a single amino acid substitution (Pro69Leu). FB-04(pta1) lacked the growth defect of FB-04(Δpta) and showed improved fermentation performance. Strain FB-04(pta1) showed a 91% increase in L-tryptophan yield in flask fermentation experiments, while acetate production decreased by 35%, compared with its parent FB-04. Throughout the fed-batch fermentation process, acetate accumulation by FB-04(pta1) was slower than that by FB-04. The final L-tryptophan titer of FB-04(pta1) reached 44.0 g/L, representing a 15% increase over that of FB-04. Metabolomics analysis showed that the pta1 genomic substitution slightly decreased carbon flux through glycolysis and significantly increased carbon fluxes through the pentose phosphate and common aromatic pathways. These results indicate that this strategy enhances L-tryptophan production and decreases acetate accumulation during the L-tryptophan fermentation process.