Biomedicines (Oct 2021)
Synthetic Tryptanthrin Derivatives Induce Cell Cycle Arrest and Apoptosis via Akt and MAPKs in Human Hepatocellular Carcinoma Cells
Abstract
Trytanthrin, found in Ban-Lan-Gen, is a natural product containing an indoloquinazoline moiety and has been shown to possess anti-inflammatory and anti-viral activities. Chronic inflammation and hepatitis B are known to be associated with the progression of hepatocellular carcinoma (HCC). In this study, a series of tryptanthrin derivatives were synthesized to generate potent anti-tumor agents against HCC. This effort yielded two compounds, A1 and A6, that exhibited multi-fold higher cytotoxicity in HCC cells than the parent compound. Flow cytometric analysis demonstrated that A1 and A6 caused S-phase arrest and downregulated the expression of cyclin A1, B1, CDK2, and p-CDC2. In addition to inducing caspase-dependent apoptosis, A1 and A6 exhibited similar regulation of the phosphorylation or expression of multiple signaling targets, including Akt, NF-κB, and mitogen-activated protein kinases. The anti-tumor activities of A1 and A6 were also attributable to the generation of reactive oxygen species, accompanied by an increase in p-p53 levels. Therefore, A1 and A6 have potential clinical applications since they target diverse aspects of cancer cell growth in HCC.
Keywords