Journal of Manufacturing and Materials Processing (Nov 2021)

A Multiaxis Tool Path Generation Approach for Thin Wall Structures Made with WAAM

  • Matthieu Rauch,
  • Jean-Yves Hascoet,
  • Vincent Querard

DOI
https://doi.org/10.3390/jmmp5040128
Journal volume & issue
Vol. 5, no. 4
p. 128

Abstract

Read online

Wire Arc Additive Manufacturing (WAAM) has emerged over the last decade and is dedicated to the realization of high-dimensional parts in various metallic materials. The usual process implementation consists in associating a high-performance welding generator as heat source, a NC controlled 6 or 8 degrees (for example) of freedom robotic arm as motion system and welding wire as feedstock. WAAM toolpath generation methods, although process specific, can be based on similar approaches developed for other processes, such as machining, to integrate the process data into a consistent technical data environment. This paper proposes a generic multiaxis tool path generation approach for thin wall structures made with WAAM. At first, the current technological and scientific challenges associated to CAD/CAM/CNC data chains for WAAM applications are introduced. The focus is on process planning aspects such as non-planar non-parallel slicing approaches and part orientation into the working space, and these are integrated in the proposed method. The interest of variable torch orientation control for complex shapes is proposed, and then, a new intersection crossing tool path method based on Design For Additive Manufacturing considerations is detailed. Eventually, two industrial use cases are introduced to highlight the interest of this approach for realizing large components.

Keywords