Cogent Economics & Finance (Dec 2022)
Modelling the downside risk potential of mutual fund returns
Abstract
Investors are becoming more sensitive about returns and losses, especially when the investments are exposed to downside risk potential in the financial markets. Despite the computational intensity of the downside risk measures, they are very widely applied to construct a portfolio and evaluate performance in terms of the investors’ loss aversion. Value-at-risk (VaR) has emerged as an industry standard to analyze the market downside risk potential. The approaches used to measure VaR vary from the standard approaches to more recently introduced highly sophisticated volatility models. In this paper, the standard approaches (student-t-distribution, log normal, historical simulation) and sophisticated volatility models (EWMA, GARCH (1,1)) both have been used to estimate the VaR of mutual funds in the Saudi Stock Exchange between June 2017 and June 2020. The VaR approaches have been subjected to conditional coverage backtest to identify the model that is the best at predicting VaR. The empirical coverage probability of the models reveals that EWMA was able to capture VaR better than the other models at a higher significance level followed by GARCH (1,1).
Keywords