Arabian Journal of Chemistry (Sep 2023)

On-line monitoring the corrosion rate of reinforcing steel in concrete under natural conditions using bimetallic batch sensors along the coast of Khanh Hoa (Vietnam)

  • Cao Nhat Linh,
  • Dmitry S. Shevtsov,
  • Ilya D. Zartsyn,
  • Nguyen Van Chi,
  • Nguyen Nhu Hung,
  • Nguyen Van Hoa,
  • Oleg A. Kozaderov,
  • Alexander N. Zyablov

Journal volume & issue
Vol. 16, no. 9
p. 105101

Abstract

Read online

A bimetallic batch sensor was proposed to assess the corrosion rate of steel reinforcement in concrete in the presence of chlorides under laboratory and marine conditions. The prepared sensor could generate an electric current independently, indicating the corrosion process's intensity. Moreover, this sensor did not require any external polarization, resulting in reducing the device's cost and power consumption. These advantages are very important when using sensors for autonomous monitoring systems away from energy sources. Laboratory tests in an aqueous extract of concrete have shown the possibility of a sensor to detect the transition from a passive state to corrosion with an increase in the concentration of chlorides. Activation was received when 0.010 < CCl ≤ 0.10 mol·dm−3. The boundary between the passive state and corrosion was obtained at a current density of 8.6 ± 0.5 μA·cm−2. The measurement results on the sensor coincided with the data of the anode polarization curves and the polarization resistance method. In addition, the monitoring system based on sensors was tested in the field conditions of Khanh Hoa (Vietnam) for four exposure conditions for nine months. The correspondence of the measured current for sensors with standard monitoring methods was obtained: the half-cell potential and the electrical resistivity. The most intense corrosion occurred for the samples placed in the splash zone or immersed to a depth of 1 m. The coefficient of conversion of the current on the sensor and the corrosion rate by the polarization resistance method for concrete samples was set to 69.9. Therefore, it is possible to use the current value on the sensor to predict the time to structural failure using well-known models based on data on the corrosion rate of reinforcement. The sensors could retain their functionality and integrity after 9 months of field tests. The current findings suggest a continuous monitoring system of the corrosion rate of steel reinforcement in marine conditions for practical applications.

Keywords