Oceanologia (Mar 2005)
Nutrient flux fuels the summer primary productivity in the oligotrophic waters of the Gulf of Aqaba, Red Sea
Abstract
The thermohaline characteristics of the Gulf of Aqaba, Red Sea,depict a well-defined seasonal pattern of winter mixing from December toApril and summer stratification from May to November. This thermohalinestructure is a major controlling factor of the nutrient, chlorophyll aand primary productivity seasonal cycles. The nitrate and chlorophyll aconcentration records generated down to 200 m at a vertical resolution of25 m - weekly during 1994, 1995 and every two weeks from April 1997 throughto December 2000 - are employed to assess the nitrogen flux across the summerthermocline of the Gulf of Aqaba. The flux calculations are based on a simplediffusion model that incorporates the physical stress eddy diffusivity factorKz and a biological stress factor k. Both Kz and k arecalculated using the Michaelis-Menten equation and the nitrate concentrationgradient. The total nitrate flux of the Gulf of Aqaba during the seven summermonths (May-November) is estimated at 0.52 mole N m-2. In relation toestablished primary productivity values (75.5 g C m-2 (MayNovember)-1) and the generated chlorophyll a records, thisyields an f fraction of new to total primary production of 0.50. Thisrelatively high f value is discussed with respect to the geophysicalcharacteristics of the Gulf of Aqaba and similar oceanic basins. The remaining50% is accounted for by cross-sectional flow from the relativelynutrient-rich coral reef coastal habitat and rapid recycling, triggered byhigh irradiance and water temperature.