European Radiology Experimental (Jul 2024)

Deep transfer learning for detection of breast arterial calcifications on mammograms: a comparative study

  • Nazanin Mobini,
  • Davide Capra,
  • Anna Colarieti,
  • Moreno Zanardo,
  • Giuseppe Baselli,
  • Francesco Sardanelli

DOI
https://doi.org/10.1186/s41747-024-00478-6
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Introduction Breast arterial calcifications (BAC) are common incidental findings on routine mammograms, which have been suggested as a sex-specific biomarker of cardiovascular disease (CVD) risk. Previous work showed the efficacy of a pretrained convolutional network (CNN), VCG16, for automatic BAC detection. In this study, we further tested the method by a comparative analysis with other ten CNNs. Material and methods Four-view standard mammography exams from 1,493 women were included in this retrospective study and labeled as BAC or non-BAC by experts. The comparative study was conducted using eleven pretrained convolutional networks (CNNs) with varying depths from five architectures including Xception, VGG, ResNetV2, MobileNet, and DenseNet, fine-tuned for the binary BAC classification task. Performance evaluation involved area under the receiver operating characteristics curve (AUC-ROC) analysis, F 1-score (harmonic mean of precision and recall), and generalized gradient-weighted class activation mapping (Grad-CAM++) for visual explanations. Results The dataset exhibited a BAC prevalence of 194/1,493 women (13.0%) and 581/5,972 images (9.7%). Among the retrained models, VGG, MobileNet, and DenseNet demonstrated the most promising results, achieving AUC-ROCs > 0.70 in both training and independent testing subsets. In terms of testing F 1-score, VGG16 ranked first, higher than MobileNet (0.51) and VGG19 (0.46). Qualitative analysis showed that the Grad-CAM++ heatmaps generated by VGG16 consistently outperformed those produced by others, offering a finer-grained and discriminative localization of calcified regions within images. Conclusion Deep transfer learning showed promise in automated BAC detection on mammograms, where relatively shallow networks demonstrated superior performances requiring shorter training times and reduced resources. Relevance statement Deep transfer learning is a promising approach to enhance reporting BAC on mammograms and facilitate developing efficient tools for cardiovascular risk stratification in women, leveraging large-scale mammographic screening programs. Key points • We tested different pretrained convolutional networks (CNNs) for BAC detection on mammograms. • VGG and MobileNet demonstrated promising performances, outperforming their deeper, more complex counterparts. • Visual explanations using Grad-CAM++ highlighted VGG16’s superior performance in localizing BAC. Graphical Abstract

Keywords