Heritage Science (Jan 2020)

Ancient mural restoration based on a modified generative adversarial network

  • Jianfang Cao,
  • Zibang Zhang,
  • Aidi Zhao,
  • Hongyan Cui,
  • Qi Zhang

DOI
https://doi.org/10.1186/s40494-020-0355-x
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 14

Abstract

Read online

Abstract How to effectively protect ancient murals has become an urgent and important problem. Digital image processing developments have made it possible to repair damaged murals to a certain extent. This study proposes a consistency-enhanced generative adversarial network (GAN) model to repair missing mural areas. First, the convolutional layer from a fully convolutional network (FCN) is used to extract deep image features; then, through deconvolution, the features are mapped to the size of the original image and the repaired image is output, thereby completing the regenerative network. Next, global and local discriminant networks are applied to determine whether the repaired mural image is “authentic” in terms of both the modified and unmodified areas. In adversarial learning, the generative and discriminant network models are optimized to better complete the mural repair. The network introduces a dilated convolution that increases the convolution kernel’s receptive field. Each network convolutional layer joins in the batch standardization (BN) process to accelerate network convergence and increase the number of network layers and adopts a residual module to avoid the vanishing gradient problem and further optimizing the network. Compared with existing mural restoration algorithms, the proposed algorithm increases the peak signal-to-noise ratio (PSNR) by an average of 6–8 dB and increases the structural similarity (SSIM) index by 0.08–0.12. From a visual perspective, this algorithm successfully complements mural images with complex textures and large missing areas; thus, it may contribute to digital restorations of ancient murals.

Keywords