Frontiers in Immunology (Mar 2024)

Nanoparticle vaccines based on the receptor binding domain of porcine deltacoronavirus elicit robust protective immune responses in mice

  • Yuanhong Wang,
  • Junhan Song,
  • Xiaoying Deng,
  • Junna Wang,
  • Miao Zhang,
  • Yun Liu,
  • Pan Tang,
  • Huili Liu,
  • Yanjun Zhou,
  • Guangzhi Tong,
  • Guoxin Li,
  • Guoxin Li,
  • Lingxue Yu,
  • Lingxue Yu

DOI
https://doi.org/10.3389/fimmu.2024.1328266
Journal volume & issue
Vol. 15

Abstract

Read online

BackgroundPorcine deltacoronavirus (PDCoV), a novel swine enteropathogenic coronavirus, challenges the global swine industry. Currently, there are no approaches preventing swine from PDCoV infection.MethodsA new PDCoV strain named JS2211 was isolated. Next, the dimer receptor binding domain of PDCoV spike protein (RBD-dimer) was expressed using the prokaryotic expression system, and a novel nanoparticle containing RBD-dimer and ferritin (SC-Fe) was constructed using the SpyTag/SpyCatcher system. Finally, the immunoprotection of RBD-Fe nanoparticles was evaluated in mice.ResultsThe novel PDCoV strain was located in the clade of the late Chinese isolate strains and close to the United States strains. The RBD-Fe nanoparticles were successfully established. Immune responses of the homologous prime-boost regime showed that RBD-Fe nanoparticles efficiently elicited specific humoral and cellular immune responses in mice. Notably, high level PDCoV RBD-specific IgG and neutralizing antibody (NA) could be detected, and the histopathological results showed that PDCoV infection was dramatically reduced in mice immunized with RBD-Fe nanoparticles.ConclusionThis study effectively developed a candidate nanoparticle with receptor binding domain of PDCoV spike protein that offers protection against PDCoV infection in mice.

Keywords