Designed Monomers and Polymers (Jan 2017)

The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium

  • Aamir Jalil,
  • Samiullah Khan,
  • Fahad Naeem,
  • Malik Suleman Haider,
  • Shoaib Sarwar,
  • Amna Riaz,
  • Nazar Muhammad Ranjha

DOI
https://doi.org/10.1080/15685551.2016.1259834
Journal volume & issue
Vol. 20, no. 1
pp. 308 – 324

Abstract

Read online

In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks (Mc), crosslink density (Mr), volume interaction parameter (v2,s), Flory Huggins water interaction parameter and diffusion coefficient (Q) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.

Keywords