NeuroImage (Jul 2022)
A comprehensive investigation of physiologic noise modeling in resting state fMRI; time shifted cardiac noise in EPI and its removal without external physiologic signal measures.
Abstract
Hemodynamic cardiac and respiratory-cycle fluctuations are a source of unwanted non-neuronal signal components, often called physiologic noise, in resting state (rs-) fMRI studies. Here, we use image-based retrospective correction of physiological motion (RETROICOR) with externally measured physiologic signals to investigate cardiac and respiratory hemodynamic phase functions reflected in rs-fMRI data. We find that the cardiac phase function is time shifted locally, while the respiratory phase function is described as single, fixed phase form across the brain. In light of these findings, we propose an update to Physiologic EStimation by Temporal ICA (PESTICA), our publically available software package that estimates physiologic signals when external physiologic measures are not available. This update incorporates: 1) auto-selection of slicewise physiologic regressors and generation of physiologic fixed phase regressors with total slices/TR sampling rate, 2) Fourier series expansion of the cardiac fixed phase regressor to account for time delayed cardiac noise 3) removal of cardiac and respiratory noise in imaging data. We compare the efficacy of the updated method to RETROICOR.