Advanced Science (Dec 2023)

Transient Loss‐Induced Non‐Hermitian Degeneracies for Ultrafast Terahertz Metadevices

  • Weibao He,
  • Yuze Hu,
  • Ziheng Ren,
  • Siyang Hu,
  • Zhongyi Yu,
  • Shun Wan,
  • Xiang'ai Cheng,
  • Tian Jiang

DOI
https://doi.org/10.1002/advs.202304972
Journal volume & issue
Vol. 10, no. 36
pp. n/a – n/a

Abstract

Read online

Abstract Non‐Hermitian degeneracies, also known as exceptional points (EPs), have attracted considerable attention due to their unique physical properties. In particular, metasurfaces related to EPs can open the way to unprecedented devices with functionalities such as unidirectional transmission and ultra‐sensitive sensing. Herein, an active non‐Hermitian metasurface with a loss‐induced parity‐time symmetry phase transition for ultrafast terahertz metadevices is demonstrated. Specifically, the eigenvalues of the non‐Hermitian transmission matrix undergo a phase transition under optical excitation and are degenerate at EPs in parameter space, which is accompanied by the collapse of chiral transmission. Ultrafast EP modulation on a picosecond time scale can be realized through variations in the transient loss at a non‐Hermitian metasurface pumped by pulsed excitation. Furthermore, by exploiting the physical characteristics of chiral transmission EPs, a switchable quarter‐wave plate based on the photoactive metasurface is designed and experimentally verified and realized the corresponding function of polarization manipulation. This work opens promising possibilities for designing functional terahertz metadevices and fuses EP physics with active metasurfaces.

Keywords