Journal of Water and Climate Change (Jun 2024)
Modeling and future projection of streamflow and sediment yield in a sub-basin of Euphrates River under the effect of climate change
Abstract
Recognizing the differential impacts of climate change across geographical scales, this study emphasizes the importance of statistical downscaling. Using Gene Expression Programming (GEP) and Linear Genetic Programming (LGP), statistical downscaling transforms broad climate trends into region-specific insights. This allowed for detailed analyses of anticipated changes in sediment yield and discharge within a Euphrates River sub-basin in Türkiye using large-scale variables from the CanESM2 model. The dataset is divided into calibration (1970–1995) and validation (1996–2005) periods. To assess the models’ accuracy, statistical measures such as RMSE, MAE, NSE, and R were used. The analysis revealed that LGP outperformed GEP in both discharge and sediment yield during validation, with RMSE = 51.79 m3/s and 4,325.66 tons/day, MAE = 27.14 m3/s and 1,593.34 tons/day, NSE = 0.684 and 0.627, and R = 0.841 and 0.788, respectively. However, when simulating future periods based on the observed period (2006–2020), the GEP model was superior to LGP under RCP2.6, RCP4.5, and RCP 8.5 scenarios from CanESM2. In 2021–2100, models suggest a moderate decrease in discharge and sediment yield, indicating potential shifts in the basin's hydrodynamics. These changes could disrupt hydropower generation, challenge water management practices, and alter riverine ecosystems. The results necessitate a thorough assessment of potential ecological consequences. HIGHLIGHTS Climate change effects on streamflow and sediment yield have been explored.; Genetic programming such as GEP and LGP have been employed in statistical downscaling technique.; Future projection of streamflow and sediment yield have been done under different emission scenarios.;
Keywords