Physical Review Research (Sep 2020)

Optical atomic clock comparison through turbulent air

  • Martha I. Bodine,
  • Jean-Daniel Deschênes,
  • Isaac H. Khader,
  • William C. Swann,
  • Holly Leopardi,
  • Kyle Beloy,
  • Tobias Bothwell,
  • Samuel M. Brewer,
  • Sarah L. Bromley,
  • Jwo-Sy Chen,
  • Scott A. Diddams,
  • Robert J. Fasano,
  • Tara M. Fortier,
  • Youssef S. Hassan,
  • David B. Hume,
  • Dhruv Kedar,
  • Colin J. Kennedy,
  • Amanda Koepke,
  • David R. Leibrandt,
  • Andrew D. Ludlow,
  • William F. McGrew,
  • William R. Milner,
  • Daniele Nicolodi,
  • Eric Oelker,
  • Thomas E. Parker,
  • John M. Robinson,
  • Stefania Romish,
  • Stefan A. Schäffer,
  • Jeffrey A. Sherman,
  • Lindsay Sonderhouse,
  • Jian Yao,
  • Jun Ye,
  • Xiaogang Zhang,
  • Nathan R. Newbury,
  • Laura C. Sinclair

DOI
https://doi.org/10.1103/PhysRevResearch.2.033395
Journal volume & issue
Vol. 2, no. 3
p. 033395

Abstract

Read online Read online

We use frequency-comb-based optical two-way time-frequency transfer (O-TWTFT) to measure the optical frequency ratio of state-of-the-art ytterbium and strontium optical atomic clocks separated by a 1.5-km open-air link. Our free-space measurement is compared to a simultaneous measurement acquired via a noise-cancelled fiber link. Despite nonstationary, ps-level time-of-flight variations in the free-space link, ratio measurements obtained from the two links, averaged over 30.5 hours across six days, agree to 6×10^{−19}, showing that O-TWTFT can support free-space atomic clock comparisons below the 10^{−18} level.