iScience (Aug 2022)

Coalescence dynamics of platinum group metal nanoparticles revealed by liquid-phase transmission electron microscopy

  • Joodeok Kim,
  • Dohun Kang,
  • Sungsu Kang,
  • Byung Hyo Kim,
  • Jungwon Park

Journal volume & issue
Vol. 25, no. 8
p. 104699

Abstract

Read online

Summary: Coalescence, one of the major pathways observed in the growth of nanoparticles, affects the structural diversity of the synthesized nanoparticles in terms of sizes, shapes, and grain boundaries. As coalescence events occur transiently during the growth of nanoparticles and are associated with the interaction between nanoparticles, mechanistic understanding is challenging. The ideal platform to study coalescence events may require real-time tracking of nanoparticle growth trajectories with quantitative analysis for coalescence events. Herein, we track nanoparticle growth trajectories using liquid-cell transmission electron microscopy (LTEM) to investigate the role of coalescence in nanoparticle formation and their morphologies. By evaluating multiple coalescence events for different platinum group metals, we reveal that the surface energy and ligand binding energy determines the rate of the reshaping process and the resulting final morphology of coalesced nanoparticles. The coalescence mechanism, based on direct LTEM observation explains the structures of noble metal nanoparticles that emerge in colloidal synthesis.

Keywords