Frontiers in Microbiology (May 2022)

The Relationship Between Gut Microbiome and Bile Acids in Primates With Diverse Diets

  • Xinyue Li,
  • Xinyue Li,
  • Xiaochen Wang,
  • Xiaochen Wang,
  • Ziming Wang,
  • Ziming Wang,
  • Mingyi Zhang,
  • Song Wang,
  • Zuofu Xiang,
  • Huijuan Pan,
  • Ming Li,
  • Ming Li

DOI
https://doi.org/10.3389/fmicb.2022.899102
Journal volume & issue
Vol. 13

Abstract

Read online

Primates have evolved a variety of feeding habits and intestinal physiological structure. Gut microbiome act as metabolic organs in many biological processes and play a vital role in adaptation to dietary niches. Gut microbiome also convert primary bile acids (BAs) to secondary. BAs profile and gut microbiome are together influenced by diets and play a significant role in nutrient absorption. The regulation between gut microbiome and BAs metabolism is bidirectional although the relationship in primates consuming diverse diets is still unclear. Here, we investigated gut microbiome structures, fecal BAs profile, and their relationship in primates preferring three distinct diets. We found that gut microbiome communities are well differentiated among dietary groups. Folivorous primates had higher Firmicutes abundance and lower Prevotella to Bacaeroides ratios, possibly related to fiber consumption. Frugivorous primates are colonized predominantly by Prevotella and Bacteroides, pointing to an increased adaptation to high-sugar and simple carbohydrate diets. Likewise, BA profiles differ according to diet in a manner predictable from the known effects of BAs on metabolism. Folivorous primates have high conjugated bile acid levels and low unconjugated to conjugated BA ratios, consistent with their fiber-rich leaf-eating diet. Much of the differentiation in secondary and unconjugated BAs is associated with microbiome composition shifts and individual bile acid concentrations are correlated with the abundance of distinct bacterial taxonomic groups. Omnivores have higher concentrations of secondary BAs, mainly lithocholic acid (LCA). These levels are significantly positively correlated with the presence of Clostrida species, showing that the digestion requirements of omnivores are different from plant-eating primates. In conclusion, gut microbiome and BAs can respond to changes in diet and are associated with nutrient component consumption in each diet primate group. Our study is the first to demonstrate BA profile differentiation among primates preferring diverse diets. BAs thus appear to work with gut microbiome to help primates adapt to their diet.

Keywords