Fundamental Material Properties of the 2LiBH4-MgH2 Reactive Hydride Composite for Hydrogen Storage: (I) Thermodynamic and Heat Transfer Properties
Julian Jepsen,
Chiara Milanese,
Julián Puszkiel,
Alessandro Girella,
Benedetto Schiavo,
Gustavo A. Lozano,
Giovanni Capurso,
José M. Bellosta von Colbe,
Amedeo Marini,
Stephan Kabelac,
Martin Dornheim,
Thomas Klassen
Affiliations
Julian Jepsen
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
Chiara Milanese
Pavia H2 Lab, Department of Chemistry, Physical Chemistry Division, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
Julián Puszkiel
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
Alessandro Girella
Pavia H2 Lab, Department of Chemistry, Physical Chemistry Division, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
Benedetto Schiavo
Dipartimento dell’Innovazione Industriale e Digitale (DIID)—Ingegneria Chimica Gestionale Informatica Meccanica, Università degli Studi di Palermo, Viale delle Scienze—Ed. 6, 90128 Palermo, Italy
Gustavo A. Lozano
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
Giovanni Capurso
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
José M. Bellosta von Colbe
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
Amedeo Marini
Pavia H2 Lab, Department of Chemistry, Physical Chemistry Division, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy
Stephan Kabelac
Institute for Thermodynamics, Leibniz Universität Hannover, Callinstraße 36, 30167 Hannover, Germany
Martin Dornheim
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
Thomas Klassen
Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
Thermodynamic and heat transfer properties of the 2LiBH4-MgH2 composite (Li-RHC) system are experimentally determined and studied as a basis for the design and development of hydrogen storage tanks. Besides the determination and discussion of the properties, different measurement methods are applied and compared to each other. Regarding thermodynamics, reaction enthalpy and entropy are determined by pressure-concentration-isotherms and coupled manometric-calorimetric measurements. For thermal diffusivity calculation, the specific heat capacity is measured by high-pressure differential scanning calorimetry and the effective thermal conductivity is determined by the transient plane source technique and in situ thermocell. Based on the results obtained from the thermodynamics and the assessment of the heat transfer properties, the reaction mechanism of the Li-RHC and the issues related to the scale-up for larger hydrogen storage systems are discussed in detail.