Journal of Imaging (May 2023)

Gender, Smoking History, and Age Prediction from Laryngeal Images

  • Tianxiao Zhang,
  • Andrés M. Bur,
  • Shannon Kraft,
  • Hannah Kavookjian,
  • Bryan Renslo,
  • Xiangyu Chen,
  • Bo Luo,
  • Guanghui Wang

DOI
https://doi.org/10.3390/jimaging9060109
Journal volume & issue
Vol. 9, no. 6
p. 109

Abstract

Read online

Flexible laryngoscopy is commonly performed by otolaryngologists to detect laryngeal diseases and to recognize potentially malignant lesions. Recently, researchers have introduced machine learning techniques to facilitate automated diagnosis using laryngeal images and achieved promising results. The diagnostic performance can be improved when patients’ demographic information is incorporated into models. However, the manual entry of patient data is time-consuming for clinicians. In this study, we made the first endeavor to employ deep learning models to predict patient demographic information to improve the detector model’s performance. The overall accuracy for gender, smoking history, and age was 85.5%, 65.2%, and 75.9%, respectively. We also created a new laryngoscopic image set for the machine learning study and benchmarked the performance of eight classical deep learning models based on CNNs and Transformers. The results can be integrated into current learning models to improve their performance by incorporating the patient’s demographic information.

Keywords