X-Ray-Sensitizers: Organic Pharmaceutical Drug Intermediates Activated Directly by X-Rays to Efficiently Populate Triplet Excitons for Cancer Treatment
Nuo Lin,
Han Xu,
Haichao Liu,
Xiaoqian Ma,
Qunying Shi,
Qing Yang,
Yating Wen,
Huanglei Wei,
Ke Hu,
Bing Yang,
Hongmin Chen
Affiliations
Nuo Lin
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
Han Xu
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
Haichao Liu
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Xiaoqian Ma
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
Qunying Shi
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
Qing Yang
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
Yating Wen
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Huanglei Wei
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
Ke Hu
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
Bing Yang
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
Hongmin Chen
State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China; Corresponding author.
Radiotherapy is an important treatment for cancer, but it is associated with major side effects due to the high dose of radiation (generally more than 50 Gy). Because radiation’s low acute and late toxicity, many tumors are treated with fractionated radiation in small doses (< 2 Gy). Scintillator X-ray-induced photodynamic therapy is an efficient methodology for cancer management that employs small doses of X-ray irradiation (< 2 Gy) in a complex process. Here we screened pharmaceutical drug intermediates that are derivatives of thioxanthone (TX) and investigated TX-derived organic pharmaceutical molecules that efficiently undergo X-ray-sensitization to populate triplet excitons (singlet oxygen) for cancer therapy when exposed to low-dose X-ray irradiation. By modifying alkoxy side chain substitutions at the 2-position to tune the molecular packing and intermolecular interactions, the fluorescence and room-temperature phosphorescence of a series of TX derivatives were assessed under X-ray irradiation. The ability of these derivatives to generate singlet oxygen and their potential for treating tumors provide new opportunities for developing organic molecules with simple chemical structures, in which large numbers of triplets can be populated directly under ultralow-dose X-ray irradiation.