PeerJ Computer Science (Oct 2023)

Novel variable neighborhood search heuristics for truck management in distribution warehouses problem

  • Akram Y. Sarhan,
  • Loai Kayed B. Melhim,
  • Mahdi Jemmali,
  • Faycel El Ayeb,
  • Hadeel Alharbi,
  • Ameen Banjar

DOI
https://doi.org/10.7717/peerj-cs.1582
Journal volume & issue
Vol. 9
p. e1582

Abstract

Read online Read online

Logistics and sourcing management are core in any supply chain operation and are among the critical challenges facing any economy. The specialists classify transport operations and warehouse management as two of the biggest and costliest challenges in logistics and supply chain operations. Therefore, an effective warehouse management system is a legend to the success of timely delivery of products and the reduction of operational costs. The proposed scheme aims to discuss truck unloading operations problems. It focuses on cases where the number of warehouses is limited, and the number of trucks and the truck unloading time need to be manageable or unknown. The contribution of this article is to present a solution that: (i) enhances the efficiency of the supply chain process by reducing the overall time for the truck unloading problem; (ii) presents an intelligent metaheuristic warehouse management solution that uses dispatching rules, randomization, permutation, and iteration methods; (iii) proposes four heuristics to deal with the proposed problem; and (iv) measures the performance of the proposed solution using two uniform distribution classes with 480 trucks’ unloading times instances. Our result shows that the best algorithm is $\widetilde{OIS}$OIS~ , as it has a percentage of 78.7% of the used cases, an average gap of 0.001, and an average running time of 0.0053 s.

Keywords