Evaluation of Physicochemical and Microbial Properties of Extracts from Wine Lees Waste of Matelica’s Verdicchio and Their Applications in Novel Cosmetic Products
Lucrezia Di Nicolantonio,
Marta Ferrati,
Maria Cristino,
Dolores Vargas Peregrina,
Marco Zannotti,
Luca Agostino Vitali,
Sonia Ilaria Ciancia,
Rita Giovannetti,
Stefano Ferraro,
Susi Zara,
Valentina Di Valerio,
Amelia Cataldi,
Maria Rosa Gigliobianco,
Roberta Censi,
Piera Di Martino
Affiliations
Lucrezia Di Nicolantonio
Cosmetology Laboratory, University of Camerino, 62032 Camerino, Italy
Marta Ferrati
Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
Maria Cristino
Recusol Srl, 62032 Camerino, Italy
Dolores Vargas Peregrina
Recusol Srl, 62032 Camerino, Italy
Marco Zannotti
Chemistry Interdisciplinary Project (ChIP), School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
Luca Agostino Vitali
Microbiology Unit, School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
Sonia Ilaria Ciancia
Microbiology Unit, School of Pharmacy, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
Rita Giovannetti
Chemistry Interdisciplinary Project (ChIP), School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
Stefano Ferraro
Chemistry Interdisciplinary Project (ChIP), School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
Susi Zara
Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
Valentina Di Valerio
Department of Medicine and Aging Sciences, “G. d’ Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
Amelia Cataldi
Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
Maria Rosa Gigliobianco
Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri 9/B, 62032 Camerino, Italy
Roberta Censi
Cosmetology Laboratory, University of Camerino, 62032 Camerino, Italy
Wine lees are sediments deposited on the walls and bottom of barrels resulting from wine fermentation and mainly consist of yeasts. Saccharomyces cerevisiae extracts, rich in beneficial components for the skin, have already been used in cosmesis, while wine lees have not been well exploited by the cosmetics industry yet. The aim of this work was the full characterization of the wine lees from Verdicchio’s wine, with the aim to exploit it as a beneficial ingredient in new cosmetic products. After mapping the microbial composition of the sample waste, the parameters for the sonication extraction process were optimized and the physicochemical properties of the extract were analyzed. The efficiency of the aqueous extraction—and in particular the yeast cell lysis necessary for the release of proteins from the cell—was assessed by evaluating cell shape and size, and protein release, under scanning electron microscopy (SEM), dynamic light scattering (DLS) and Bradford’s protein assays. Thus, the total phenol content and antioxidant capacity of the supernatant recovered from native and sonicated lees were determined by Folin–Ciocalteu’s and spectrophotometric assays, respectively. To quantify the heavy metals and highlight the presence of microelements beneficial for the skin, inductively coupled plasma-mass spectrometry (ICP-MS) was applied. In vitro metabolic activity and cytotoxicity were tested on both HaCat keratinocytes and human gingival fibroblasts, showing that wine lees are safe for skin’s cells. The results show that sonicated lees appear to be more interesting than native ones as a consequence of the release of the active ingredients from the cells. Due to the high antioxidant capacity, content of beneficial elements for skin and an appropriate microbiologic profile, wine lees were included in five new solid cosmetic products and tested for challenge test, compatibility with human skin, sensory analysis, trans epidermal water loss (TEWL) and sebometry.